République Tunisienne

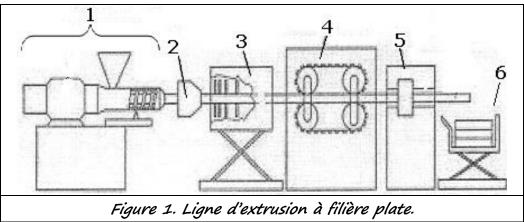
Ministère de l'enseignement supérieur

Direction Générale des Etudes Technologiques

Institut Supérieur des Etudes Technologiques de Sousse

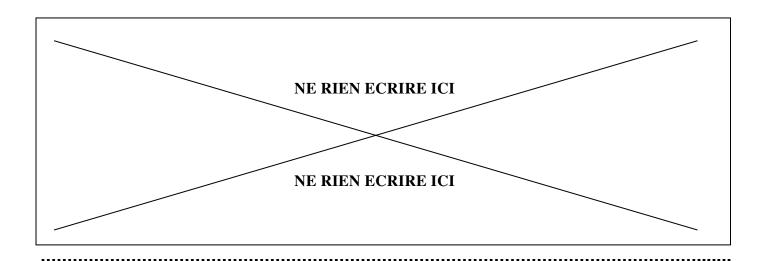
Département : Mécanique **Filière :** Génie mécanique **Option :** Plasturgie **Classe :** GMPL-2.1

<u>CODE</u>	Nom : Prénom :
	N° de la carte d'étudiant : Date :
	N° de la salle : N° de la place : Signature :


.....

<u>CODE</u>	Département de génie mécanique	DEVOIR SURVEILLÉ PROCÉDÉS DE MISE EN FORME CONTINUS	Novembre 2015 Durée: 1 h 30 min
Note :/20	Nombre de pages : 4	Proposé par : SLIM CHOUCHENE	Documents non autorisés

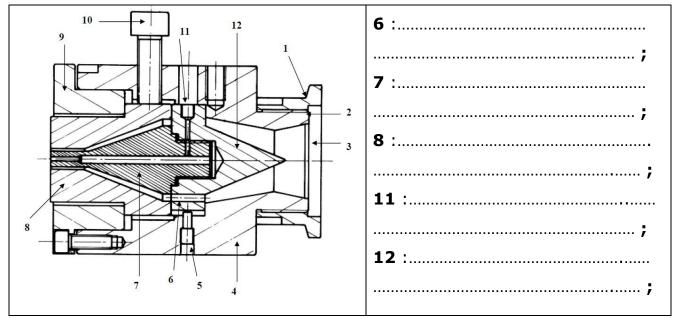
NB: L'examen comporte quatre exercices indépendants.


EXERCICE 1: (4 POINTS)

L'extrusion est de loin le plus important des procédés de mise en forme des polymères. Le schéma de principe d'une **ligne d'extrusion à filière plate** est présenté figure suivante.

1. Déterminer le nom et la fonction de chaque partie de la ligne d'extrusion ;

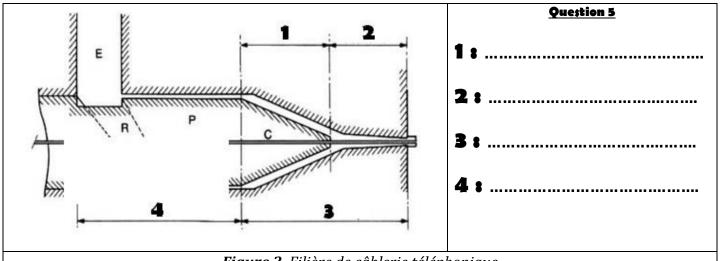

ORGANES	FONCTION
1.	
2.	
3.	
4.	
5.	
6.	



EXERCICE 2: (5 POINTS=0.5+0.5+0.75+1.75+0.5+1)

La figure ci-dessous montre une tête d'extrusion type.

- 1. Quelle est la forme de produit obtenu par cette filière ?
- 2. Montrer sur la figure le flux de circulation de la matière par des petites flèches ;
- **3.** Quel est le rôle de la vis 10 ;
- 4. Nommer les éléments suivants : 6, 7, 8, 11 et 12 ;
- 5. Colorer en rouge et monter par une flèche l'entrefer ;
- 6. Schématiser en 3D la forme de l'ailette ;


EXERCICE 3: (6 POINTS=0,5+0.75+1+1+1+1+0.75)

Le gainage des câbles est réalisé à l'aide d'une tête d'équerre spéciale, à travers laquelle passe le câble devant recevoir la matière plastique extrudée.

1. Citer deux exemples d'application obtenus par ce type de filière ;

.....

- **3.** Quelle est la technique utilisée pour assurer une bonne adhésion du plastique au métal ;
- 4. Compléter le schéma suivant d'une filière du câble téléphonique ;

Figure 3. Filière de câblerie téléphonique

- **5.** Identifier le nom des différentes zones sur la figure 3 ;
- 6. Identifier le nom des différents éléments de cette filière ;

E :	R :	

7. Montrer sur cette figure l'entrée et la sortie de la matière et du l'âme (par des petites flèches) ;

EXERCICE 4: (5 POINTS=0.5X10)

La géométrie de la vis est définie pour permettre au procédé de travailler dans des conditions optimales en fonction du polymère utilisé. Considérons la vis (figure ci-dessous ; échelle 1 :10) de diamètre d avec un fourreau de diamètre D, B le pas et e l'épaisseur du filet.

- 1. Déterminer le diamètre de la vis d ;
- 2. Déterminer le diamètre intérieur du fourreau D ;

3.	Déterminer le pas de la vis B ;
4.	Déterminer l'épaisseur du filet e ;
5.	Calculer la profondeur du chenal à l'alimentation H_a ;
6.	Calculer la profondeur du chenal à au pompage H_p ;
7.	Calculer la tangente de l'angle de filet et θ ;
8.	Calculer la largeur du chenal vaut W ;
	Calculer la longueur déroulée d'un tour d'hélice Z ;
10	• Calculer le taux de compression t _c ;
-	