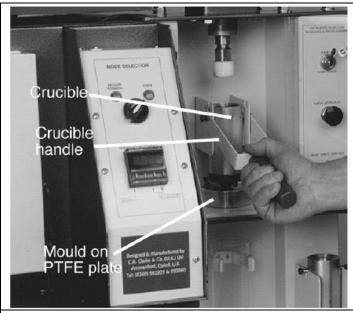
Département génie mécanique	ISET DE SOUSSE	Mise en forme
PLASTURGIE	TP n° 6	_
Niveau: 3	Moulage par injection	Durée : 3 h

DOCUMENTS RESSOURCES:

- 1. ANNEXE 2: FICHE MATIÈRES PE, PS ET NYLON;
- 2. Annexe 5 : Précis Matières plastiques: structures propriétés, Mise en œuvre, et normalisation, pages 183-196 ;
- 3. SÉQUENCE VIDÉO.
 - Lire le dossier ressources (annexes);
 - Visionner le film ;
 - Répondre aux questions.


L'ÉTUDIANT EST APPELÉ À PRÉPARER AVANT LE JOUR PRÉVU POUR LE TP:

- ⇒LA RÉPONSE À TOUTES LES QUESTIONS DE L'APERÇU THÉORIQUE ;
- ⇒Un résumé écris de la partie expérimentale ;
- \Rightarrow Une liste de besoin du matériel à commander de la part du magasinier ;

I. INTRODUCTION

Le **moulage par injection**, aussi appelé **injection plastique**, est un procédé de mise en œuvre des thermoplastiques.

La plupart des pièces en thermoplastique sont fabriquées avec des presse d'injection plastique : la matière plastique est ramollie puis injectée dans un moule, et ensuite refroidie.

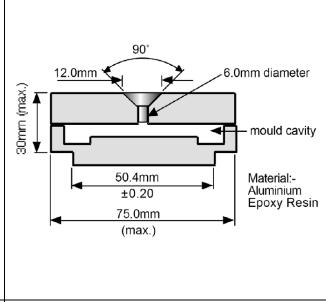


Figure 1 – Moule et creuset en position d'injection.

Figure 2 – Paramètres du moule.

Les matériaux thermoplastiques favorables pour le moulage par injection sur le centre de thermoformage 911 sont:

Matériaux	Température de four recommandée
Polyethylene	195°C
Nylon	210°C
Polystyrene	195°C

La figure 3 montre un exemple de pièce injectée sur le centre de thermoformage : Roue.

COMPTE RENDU

Le rapport doit contenir une partie expérimentale décrivant brièvement ce qui a été fait pendant la séance et une partie théorique est nécessaire. Il doit également contenir une discussion des résultats obtenus. Il ne s'agit pas simplement d'observer et de décrire les échantillons séparément, mais de comprendre et d'expliquer les phénomènes à partir de groupes d'échantillons que l'on comparera pour mettre en évidence l'influence de tel ou tel paramètre.

C'est aussi dans cette partie que l'étudiant mettre les réponses aux éventuelles questions posées par l'assistant. On peut mettre un résumé des résultats principaux, ce que vous avez appris, une critique de la méthode etc., dans une *conclusion*.

L'ÉTUDIANT EST APPELÉ À FAIRE UN EXPOSÉ ORAL À LA FIN DE CHAQUE TP ET DOIT PRÉPARER POUR LA RÉPONSE À TOUTE QUESTION POSÉE PAR L'ENSEIGNANT.

V. LITTERATURE

- [1] Documents machine.
- [2] Précis Matières plastiques: structures-propriétés, Mise en œuvre, et normalisation,
- J.-P. Trotignon, J. Verdu, A. Dbraczynski et M. Piperaud.

(Document réponse) TP6 Moulage par injection
Noms et Prénoms:

→ APERCU THEORIQUE

1. Déterminer la température de la matière à injecter et la température de moule pour ces trois polymères ; PE, PS et Nylon ;

Polymères	température d'injection	température de moule
PE		
PS		
Nylon (PA)		

2.	À partir des échantillons fournis qui représentent des exemples de pièces injectées,
	identifier les défauts et leurs causes éventuelles ;
з.	Identifier ce défaut et leurs causes éventuelles (voir figure ci-dessous) ;

→ TRAVAIL EXPERIMENTAL

1.	Identifier	le matériau	proposé	et déterminer	sa tem	npérature	de fusio	n
----	------------	-------------	---------	---------------	---------------	-----------	----------	---

_	D// :		, , ,				
2.	Determiner	ia tem	perature d	e moule ;	,	 	

3.	Réaliser l'opération de moulage par injection (Mode opératoire : document machine,
	annexe 3) avec la température de four suivante : T_1 = T_f +30° (Réglez la minuterie pour 20°
	minutes);
4.	Décrire, par une phrase, le produit obtenu dans chaque cas ;
5.	Présenter les défauts observés sur les produits, citer les causes éventuelles des ces défauts ;

- 6. On donne un Moule d'injection plastique :
 - En s'aidant du schéma ci-dessous Identifier tous ces constituants ;
 - Calculer la surface projetée ;
 - Calculer la force de verrouillage (PP et pression=500 tonnes);

ANNEXE 1_ TP6 MOULAGE PAR INJECTION

matières	température matière °C	température moule °C	pression d'injection P ₁ en bars	pression de maintien en bars	vitesse d'injection	temps de maintien	contre- pression en bars	dispositions supplé- mentaires
PEbd	160/260	20/70	500/1 000	minimum sans retassures		faible		
PEhd	260/310	50/70	600/P maxi	30 à 100 % de <i>P</i> maxi				
PP	250/270	40/100	600/P maxi	50 à 100 % de P ₁				
PS PS choc	180/230 < 250	20/60 Si possible : 45/60	1 000/P maxi		maximale			parfois étuvage
SAN	220/260	50/70	1 000/P maxi		élevée			ėtuvage
ABS	220/280	60/80	800/1 400					étuvage
PA 6.6	250/290	80/90	700/1 200	40 à 100 % de P _I	élevée			étuvage
PA 6	240/290	80/90	800/1 300	20 à 60 % de P ₁	élevée			étuvage
PA11	230/300	30/90	400/700		moyenne			étuvage
POM	180/220 < 230	50/120	800/2 000	P_1	élevée	20 % du cycle minimum		parfois étuvage
PC	270/320	80/120	800/2 000	70 % de P _I	élevée	minimum	faible	étuvage
PETP	260/270 < 300	140	1 200/1 700		élevée			étuvage
PETP amorphe	270/290	40/50	1 200/1 700		élevée			étuvage
PBTP	260/270	70/80	1 000/2 000	60 à 100 % de P ₁	élevée		10 à 20 % P _I	étuvage
PPO	260/300	80/110	1 000/2 000	60 à 80 % de P ₁	élevée		faible	étuvage
PVC	170/190	50/60	1 200/1 400	50 à 80 % de <i>P</i> ₁	faible à moyenne		jusque 150	éjection de la goutte froide
PMMA	200/250	40/90	500/2 000	décroissante		minimum	100/200	étuvage
PA 6.6 + fibres verre	260/290	90/120	900/1 500	40 à 100 % de P _I	élevée			étuvage
PA 6 + fibres verre	240/290	90/120	1 000/1 500	20 à 60 %	élevée de P _I			étuvage
PC + fibres verre	300*325	90/110	1 000/2 000	70 % de P ₁	élevée	minimum	faible	étuvage

Tableau 1. Conditions d'injection de quelques polymères commerciaux.

Ī	Département génie mécanique	ISET DE SOUSSE	Mise en forme
-	•	<u>TP n° 6′</u>	
	PLASTURGIE Niveau : 3	Travail individuel par étudiant	Durée :
	Wivedu . 5	Recherche bibliographique « Principe et	3 h
		Presse d'injection »	

(Document réponse) TP6' Recherche bibliographique « Principe et Presse d'injection »	
Nom et Prénom:	

PHASE D'INJECTION

- 1. Décrire brièvement les noms des éléments de la machine d'injection (industrielle) ;
- 2. Décrire les trois phases d'injection ;
- 3. Quelle est la conséquence d'une injection sans maintien en pression ;
- 4. Expliquer le processus dans les deux cas (sans et avec maintien) ;
- **5.** Quel est le rôle de maintien ;

CONCEPTION DES MACHINES ET DES MOULES

- **6.** Quel est le rôle de la vis et du clapet ;
- 7. Dans quel cas on utilise le système transfert ;
- **8.** Représenter par un schéma simplifié un moule à deux plaques et nommer ces principaux éléments ;

9. Soit à réaliser la pièce suivante (figure 5), proposer le moule d'injection à une empreinte (croquis), montrer le plan de joint et le nombre de plaque de moule ;

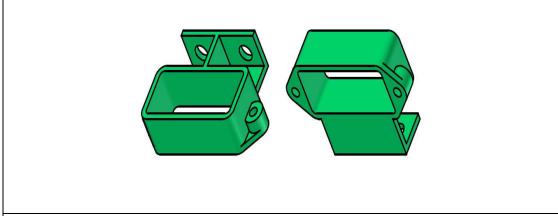


Figure 4 - La pièce à industrialiser est une équerre de montage pour servomoteur.