République Tunisienne

Ministère de l'enseignement supérieur

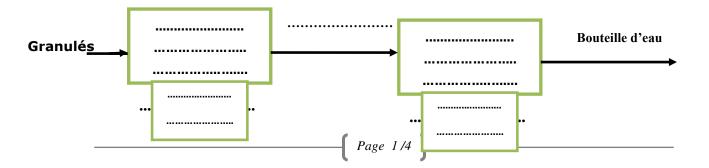
Direction Générale des Etudes Technologiques

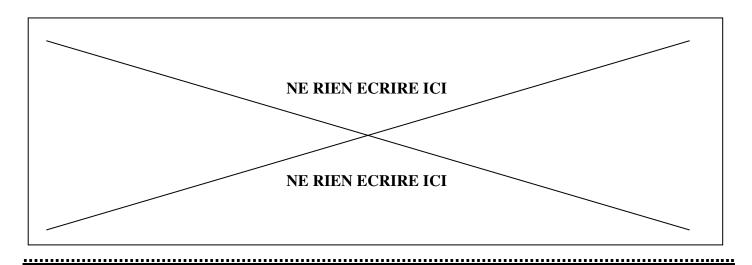
Institut Supérieur des Etudes Technologiques de Sousse

Département :	: Mécanique Filière : Génie mécanique	e Option : Plasturgie Classe : GMPL-2.1
<u>CODE</u>	Nom :	Prénom :
	N° de la carte d'étudiant :	Date :
	N° de la salle : N° de la plac	ce : Signature :

.....

<u>CODE</u>	Département de	DEVOIR SURVEILLÉ PROCÉDÉS	Avril 2017
	génie mécanique	DE MISE EN FORME DISCONTINUS	Durée: 1 h 30 min
	N	Proposé par :	Documents non
Note : /20	Nombre de pages : 4	SLIM CHOUCHENE	autorisés


NB: L'examen comporte trois exercices indépendants.


EXERCICE 1: (5.5 POINTS)

1. Identifier le procédé de mise en œuvre de ces objets ;

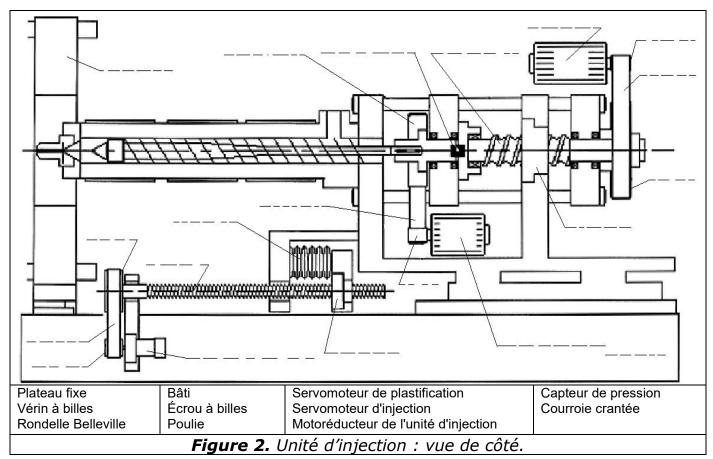
OBJETS	PROCÉDÉS DE MISE EN ŒUVRE
Gobelet	
Poignées de casserole	
Siphon plastique	
Barquette en PSE	
Flacon	
Matelas	
Les œuvres d'arts	
Conteneur	

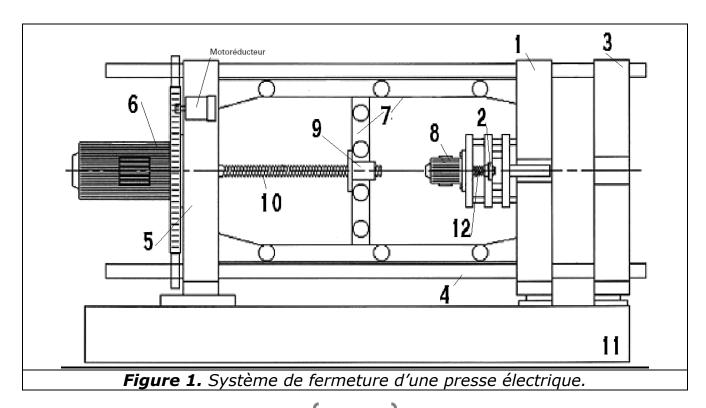
- 2. Compléter le schéma suivant qui montre toutes les étapes de fabrication d'une bouteille d'eau ;
 - a) Indiquer dans chaque case, le type de procédés et l'outillage nécessaire ;
 - b) Indiquer le nom de la machine au dessous de chaque case;

EXERCICE 2: (8.5 POINTS=1,5+1+1+2,5+2,5)

Traditionnellement, les transformateurs de matières plastiques par injection utilisent des presses à injecter basées sur un système hydraulique. Depuis le début des années 1980, une nouvelle alternative au système hydraulique a fait son apparition : la presse à injecter horizontale entièrement électrique.

	Quelles sont les avantages des presses électriques (3) ;
2. [Dans les presses électriques, Les vérins hydrauliques sont remplacés par quels éléments ;
	Quel est l'élément qui assure la transformation de mouvement de rotation en ur mouvement de translation ;

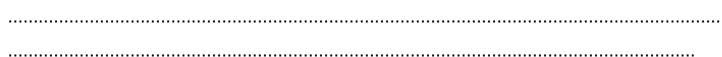

La figure **1** présente un système de fermeture d'une presse électrique avec un entraînement direct et sur la figure **2**, nous pouvons observer une unité d'injection avec une transmission par courroie crantée.

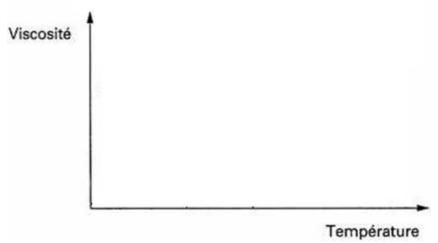

4. Identifier le nom de chaque élément de l'unité de fermeture (figure 1) ;

N°	Nom des éléments	N°	Nom des éléments
1		7	
2		8	
3		9	

4	10	
5	11	
6	12	

5. En s'aidant des termes cités sur la figure 2, nommer les différents éléments de cette machine ;

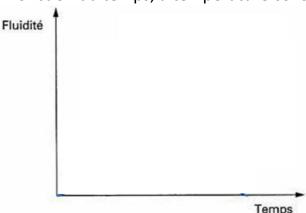



EXERCICE 3: (6 POINTS)

La viscosité η d'une masse de matière thermodurcissable soumise à une élévation de température évolue suivant deux processus antagonistes (figure 1).

1. Que signifie viscosité :

2. Représenter sur la figure ci-dessous la courbe de viscosité par réaction chimique (I) et la courbe de viscosité par chauffage (II) ;



3. Représenter sur la même figure la courbe résultante de la viscosité des matières thermodurcissables en fonction de la température (III) ;

4. Citer les trois phases principales de moulage des thermodurcissables

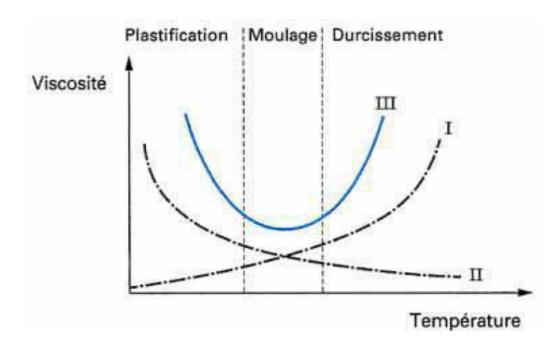
Dans le cas des matières thermodurcissables, l'achèvement de la réaction chimique de réticulation nécessite également un certain temps.

5. Montrer sur la figure ci-dessous la variation de la fluidité d'une matière fluide et une matière peu fluide en fonction du temps, à température constante ;

6. Quel le est l'influence de la pression sur la fluidité des matières thermodurcissables, à température constante ;.....

Atouts:

— des coûts d'exploitation inférieurs


grâce à la réduction de la consommation d'eau et d'électricité, la suppression du traitement des huiles usagées et des consommables tels que les filtres et les joints, la possibilité de réduire les temps de cycle ;

— un contrôle optimal des mouvements et des cycles

grâce à la précision des servomoteurs, la gestion indépendante de ceux-ci par une commande numérique, une reproductibilité parfaite ;

— un environnement plus confortable

grâce à un niveau sonore très faible, l'absence de fuite ou de vaporisation d'huile ;

