République Tunisienne

Ministère de l'enseignement supérieur

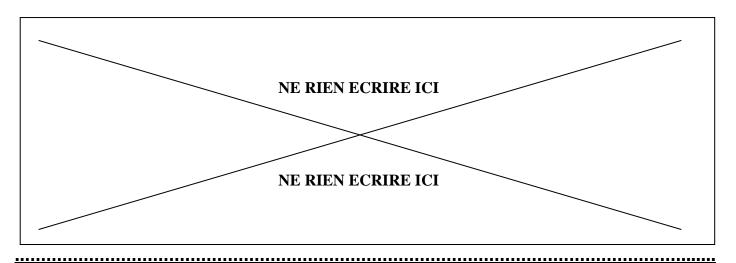
Direction Générale des Etudes Technologiques

Institut Supérieur des Etudes Technologiques de Sousse

Département :	Mécanique Filière : Génie mécanique Option : Plasturgie Classe : GM PL-2
<u>CODE</u>	Nom : Prénom :
	N° de la carte d'étudiant : Date : Date :
	N° de la salle : N° de la place : Signature :

<u>CODE</u>	Département	DEYOIR SURVEILLÉ	Avril 2021
	de	Procédés	
	génie mécanique	DE MISE EN FORME DES MP 1	Durée: 1 h
		Proposé par :	Documents non
Note : /20	Nombre de pages : 4	SLIM CHOUCHENE	autorisés

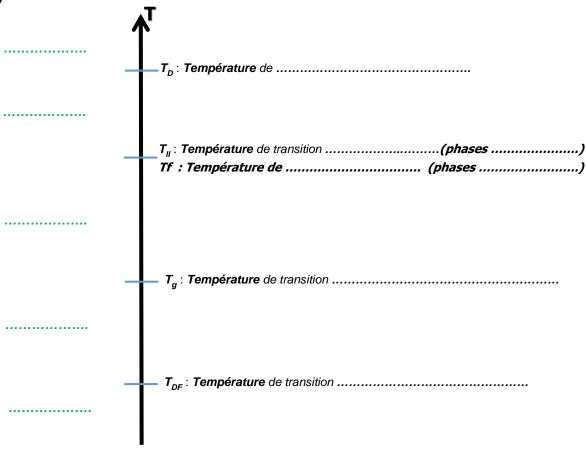
NB: L'examen comporte Trois exercices indépendants.


EXERCICE 1: (4 POINTS)

1. Identifier le procédé de mise en œuvre de ces objets ;

2. Quel type de pièce peut-on réaliser par soufflage ?

OBJETS	PROCÉDÉS DE MISE EN ŒUVRE
Préforme	
Gobelet	
Citerne	
biberon	
Poignées de casserole	
Siphon plastique	
Flacon	
Matelas	
Les œuvres d'arts	
Conteneur	
Bouteille d'eau	
Bidon	



EXERCICE 2: (10 POINTS)=3+1+0.5+0.5+1+1+1+1+1)

Le diagramme incomplet ci-dessous montre les transitions thermiques et les états du polymères amorphe ou semi cristallin ;

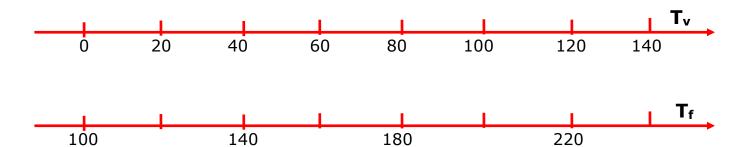
- 1. Sur le diagramme, nommer les transitions thermiques et les états en fonction de la température ;
- 2. Mentionner par flèches les températures de déformation sous charge pour un polymère amorphe TDc_a et un polymère semi cristallin TDc_{sc} en indiquant leurs formules ;

3.	Que	sig	nifie	e tei	mpé	erat	ure	de	tra	nsit	ion	vit	reus	se;					
 		• • • • • •	• • • • • •			••••		•••••							 	•••••	 	•••••	 •••••

4. Que signifie température de fusion ;

.....

5. Relier par une flèche;


Si un polymère amorphe a une Tg inférieure à la température ambiante, il sera Si un polymère amorphe a une Tg au-

dessus de la température ambiante, il sera

mou	et	souple	à					
température ambiante								
dur	et	cassant	à					
température ambiante								

6. On cite ci-dessous une variété de matériau plastique, marquer les températures sur les axes T_v et T_f (température ambiante=25°C):

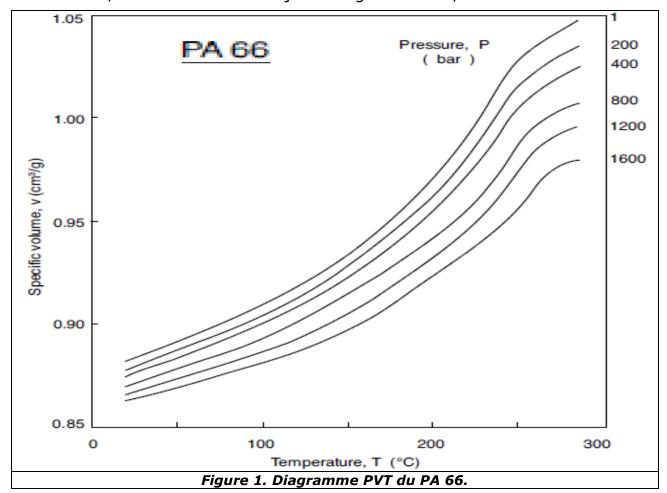
Matériaux	Température de Transition vitreuse (°C)	Température de fusion (ou liquide-liquide) (°C)
PP _{homo}	-10	170
PA	50	215
PS	80	160
PVC	100	190
PMMA	135	180

7. Parmi ces matériaux, lequel qui est souple à la température ambiante ;

.....

8. Parmi ces matériaux, lesquels qui sont durs à la température ambiante ;

.....


9. Si on chauffe ces matériaux jusqu'à 70°C, déterminer l'état de chaque matériau ;

Matériaux	Etat de matériau
PP _{homo}	
PA	
PS	
PVC	
PMMA	

EXERCICE 3: (6 POINTS = 3+2+1)

La figure 1 montre le diagramme **PVT** du PA 6-6. On souhaite simuler le cycle d'injection et déterminer le retrait total de la pièce injectée.

- 1. Simuler le cycle de moulage du PA 6-6 dans les deux cas suivants sur la figure 1:
 - sans maintien (en bleu): Pi=800 bars, température d'injection= 270 °C;
 - \triangleright avec maintien (en rouge) : $P_i=1200$ bars, température d'injection= 250 °C, $P_m=1/3$ de P_i et le seuil d'injection fige à 150°C;

2. Estimer le retrait volumique dans les deux cas ;	
3. D'après ce diagramme PVT, Déterminer le type de structure du PA 6-6 ;	